General Certificate of Education
June 2008
Advanced Level Examination

A~R

MPC4
MATHEMATICS
OUALIFICATIONS
Unit Pure Core 4

Thursday 12 June 20089.00 am to 10.30 am

For this paper you must have:

- an 8-page answer book
- the blue AQA booklet of formulae and statistical tables. You may use a graphics calculator.

Time allowed: 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Write the information required on the front of your answer book. The Examining Body for this paper is AQA. The Paper Reference is MPC4.
- Answer all questions.
- Show all necessary working; otherwise marks for method may be lost.

Information

- The maximum mark for this paper is 75 .
- The marks for questions are shown in brackets.

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.

Answer all questions.

1 The polynomial $\mathrm{f}(x)$ is defined by $\mathrm{f}(x)=27 x^{3}-9 x+2$.
(a) Find the remainder when $\mathrm{f}(x)$ is divided by $3 x+1$.
(b) (i) Show that $\mathrm{f}\left(-\frac{2}{3}\right)=0$.
(ii) Express $\mathrm{f}(x)$ as a product of three linear factors.
(iii) Simplify

$$
\frac{27 x^{3}-9 x+2}{9 x^{2}+3 x-2}
$$

(2 marks)

2 A curve is defined, for $t \neq 0$, by the parametric equations

$$
x=4 t+3, \quad y=\frac{1}{2 t}-1
$$

At the point P on the curve, $t=\frac{1}{2}$.
(a) Find the gradient of the curve at the point P.
(b) Find an equation of the normal to the curve at the point P.
(c) Find a cartesian equation of the curve.

3 (a) By writing $\sin 3 x$ as $\sin (x+2 x)$, show that $\sin 3 x=3 \sin x-4 \sin ^{3} x$ for all values of x.
(b) Hence, or otherwise, find $\int \sin ^{3} x \mathrm{~d} x$.

4 (a) (i) Obtain the binomial expansion of $(1-x)^{\frac{1}{4}}$ up to and including the term in x^{2}.
(ii) Hence show that $(81-16 x)^{\frac{1}{4}} \approx 3-\frac{4}{27} x-\frac{8}{729} x^{2}$ for small values of x.
(b) Use the result from part (a)(ii) to find an approximation for $\sqrt[4]{80}$, giving your answer to seven decimal places.

5 (a) The angle α is acute and $\sin \alpha=\frac{4}{5}$.
(i) Find the value of $\cos \alpha$.
(ii) Express $\cos (\alpha-\beta)$ in terms of $\sin \beta$ and $\cos \beta$.
(iii) Given also that the angle β is acute and $\cos \beta=\frac{5}{13}$, find the exact value of $\cos (\alpha-\beta)$.
(b) (i) Given that $\tan 2 x=1$, show that $\tan ^{2} x+2 \tan x-1=0$.
(ii) Hence, given that $\tan 45^{\circ}=1$, show that $\tan 22 \frac{1}{2}^{\circ}=\sqrt{2}-1$.

6 (a) Express $\frac{2}{x^{2}-1}$ in the form $\frac{A}{x-1}+\frac{B}{x+1}$.
(3 marks)
(b) Hence find $\int \frac{2}{x^{2}-1} \mathrm{~d} x$.
(2 marks)
(c) Solve the differential equation $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{2 y}{3\left(x^{2}-1\right)}$, given that $y=1$ when $x=3$.

Show that the solution can be written as $y^{3}=\frac{2(x-1)}{x+1}$.
(5 marks)

7 The coordinates of the points A and B are $(3,-2,1)$ and $(5,3,0)$ respectively.

The line l has equation $\mathbf{r}=\left[\begin{array}{l}5 \\ 3 \\ 0\end{array}\right]+\lambda\left[\begin{array}{r}1 \\ 0 \\ -3\end{array}\right]$.
(a) Find the distance between A and B.
(b) Find the acute angle between the lines $A B$ and l. Give your answer to the nearest degree.
(c) The points B and C lie on l such that the distance $A C$ is equal to the distance $A B$. Find the coordinates of C.

8 (a) The number of fish in a lake is decreasing. After t years, there are x fish in the lake. The rate of decrease of the number of fish is proportional to the number of fish currently in the lake.
(i) Formulate a differential equation, in the variables x and t and a constant of proportionality k, where $k>0$, to model the rate at which the number of fish in the lake is decreasing.
(ii) At a certain time, there were 20000 fish in the lake and the rate of decrease was 500 fish per year. Find the value of k.
(b) The equation

$$
P=2000-A \mathrm{e}^{-0.05 t}
$$

is proposed as a model for the number of fish, P, in another lake, where t is the time in years and A is a positive constant.

On 1 January 2008, a biologist estimated that there were 700 fish in this lake.
(i) Taking 1 January 2008 as $t=0$, find the value of A.
(ii) Hence find the year during which, according to this model, the number of fish in this lake will first exceed 1900.

END OF QUESTIONS

